Quantum device result

In this section, we will output the results of the quantum computer (simulator) calculations.

  1. Quantum Device

  2. VQE Log

  3. Evaluated Properties

We will explain these items in sections below.

Quantum device

Output information of QuantumDevice specified in the input.

Output example

"quantum_device": {
  "type": "SAMPLING_SIMULATOR"
}

VQE log

The log of VQE is output as follows

  • opt_params: parameters of optimized VQE (Note 3)

  • cost_hist: History of the cost function for each state

    • history: History of the cost function in each cycle of VQE.

    • state: Electronic state (output only for VQD)

  • nfev: The number of times the cost function is evaluated

  • nit: the number of cycles of VQE

  • elapsed_time: calculation time of VQE in seconds.

  • energy_hist: (Note 1, 4)

    • history: The energy history of a VQE for each cycle (a.u.)

    • state: the electronic state of the VQE

  • success: convergence information of the optimization

  • message: Message returned by the optimization routine. The contents vary depending on the optimization method.

  • optimized_orbital: Optimized molecular orbital in OOVQE.

  • quantum_resources: Information about computational resources for quantum computation.

    • circuit: Information on quantum circuits (Ansatz part)

      • num_qubit: Number of Qubit

      • num_parameter: number of parameters.

      • num_gate: total number of gates.

      • num_1qubit_gate: number of 1qubit gates.

      • num_2qubit_gate: number of 2qubit gates.

    • sampling: Information about sampling (note 2)

      • num_observable_groups: number of concurrent groups in the cost function (see Observable grouping for concurrent groups).

      • total_shots: the total number of shots

    • estimated_execution_time: estimated execution time (note 2)

      • superconductor: Estimated execution time in seconds for a superconducting quantum computer.

      • trapped_ion: Estimated execution time (in seconds) using an ion trap-type quantum computer.

(Note 1) If the type of ansatz is FERMIONIC_ADAPTIVE, no output is given.

(Note 2) Only output if the type of quantum_device is SAMPLING_SIMULATOR.

(Note 3) The optimized parameters and the cost/energy histories are not outputted when a value other than NONE is selected for type of orbital_optimization.

(Note 4) The optimized parameters and the cost/energy histories are not outputted when a value is selected MCVQE for type of solver, and other than NONE is selected for type of orbital_optimization.

Output example

"vqe_log": {
  "opt_params": [
    -0.9416036864094274,
    1.5079628003756818,
    ...
  ],
  "cost_hist": [
    {
      "history": [
        -2.288522129847763,
        -2.5728929940924505,
        ...
      ]
    }
  ],
  "nfev": 280,
  "nit": 15,
  "elapsed_time": 0.2707430289999999,
  "energy_hist": [
    {
      "history": [
        -0.9417947301166705,
        -1.0902403282499935,
        ...
      ],
      "state": 0
    },
    {
      "state": 1,
      "history": [
        -0.4049326696144223,
        -0.3924123375924636,
        ...
      ]
    }
  ],
  "success": true,
  "message": "",
  "quantum_resources": {
    "circuit": {
      "num_qubit": 4,
      "num_parameter": 1,
      "num_gate": 112,
      "num_1qubit_gate": 16,
      "num_2qubit_gate": 96
    },
    "sampling": {
      "num_observable_groups": 5,
      "total_shots": 220000
    },
    "estimated_execution_time": {
      "superconductor": 121.31250955205853,
      "trapped_ion": 104866.66666666666
    }
  },
  "optimized_orbital": [
    {
      "mo_energy": [
         -0.5954972513211284,
         0.7144441932583552
       ],
      "mo_coeff": [
         [
           0.5445586947820809,
           1.2620659398031695
         ],
         [
           0.5445586947820809,
           -1.2620659398031695
         ]
      ],
      "molecular_orbital_data":{
        "data": "[Molden Format]..."
        "format": "MOLDEN",
       }
       state: 0
    },
    ...
  ]
}

Evaluated properties

Output the following physical quantities as a list.

  • energy: energy of the electronic state (a.u.)

  • num_electrons: total number of electrons

  • multiplicity: spin multiplicity

  • sz_number: z-axis component of total spin

  • dipole_moment: the permanent dipole moment (a.u.)

  • oscillator_strength: the oscillator strength (a.u.)

  • transition_dipole_moment: transition dipole moments (a.u.)

  • gradient: first derivative of the nuclear coordinates (a.u.)

  • hessian: second derivative in nuclear coordinates (a.u.)

  • vibrational analysis: eigenfrequencies (1/cm) and vibration modes of the analysis

The output of each quantity has the following structure.

  • values

    • state or state_pair: the output electronic state or its pair

    • value: Calculated value of the physical quantity.

    • sample_std: Calculated sample standard deviation (energy, dipole_moment only. Unavaliable when MCVQE solver is used.).

  • metadata

    • elapsed_time: Time to evaluate the physical quantity

The output of band_structure has the following structure.

  • values

    • kpt: Coordinate of the k-point

    • band: Energy band (“conduction band” or “valence band”)

    • value: Energy

  • metadata

    • elapsed_time: Time to evaluate the physical quantity

  • algorithm: Algorithm used to find quasi-particle band energies (QSE or QEOM)

Given an observable represented as a sum of Pauli operators \(P_i\) with coefficients \(c_i\)

\[O = \sum_i c_i P_i\]

the sample standard deviation \(\sigma\) is calculated as follows: when the sample variance of the Pauli operator is \(Var(P_i)\) and the number of shots is \(n\),

\[\sigma = \sqrt{\frac{\sum_i c^2_i Var(P_i)}{n}}\]

However, this is valid only when no grouping of the Pauli operators is performed (NO_GROUPING is selected). When grouping is applied, covariance of the expectation values of the Pauli operators within the same groups is also incorporated.

Dipole moment

The value of dipole_moment outputs the values of the permanent dipole moments in \(x, y, z\) direction as a list.

Transition dipole moment

The value of transition_dipole_moment outputs a list of the values of the \(x, y, z\) direction of the transition dipole moments as a real part and an imaginary part. Quantum computing may result in the imaginary part of the transition dipole moments. VQD calculates the absolute values only.

Oscillator Strength

The value of oscillator_strength outputs the value of the oscillator strength.

Gradient

The value of gradient outputs first-order derivative of the energy \(E\) with respect to the input nuclear coordinates

\[R^1_x, R^1_y, R^1_z, R^2_x, R^2_y, R^2_z, ...\]

as the following list:

\[\frac{\partial E}{\partial R^1_x}, \frac{\partial E}{\partial R^1_y}, \frac{\partial E}{\partial R^1_z}, \frac{\partial E}{\partial R^2_x}, \frac{\partial E}{\partial R^2_y}, \frac{\partial E}{\partial R^2_z}, ...\]

Hessian.

The value of heissian outputs second-order derivative of the energy \(E\) with respect to the input nuclear coordinates

\[R^1_x, R^1_y, R^1_z, R^2_x, R^2_y, R^2_z, ...\]

as a double list corresponding to the following matrix

\[\begin{split}\begin{pmatrix} \frac{\partial^2 E}{\partial R^1_x \partial R^1_x} & \frac{\partial^2 E}{\partial R^1_x \partial R^1_y} & \frac{\partial^2 E}{\partial R^1_x \partial R^1_z} & \frac{\partial^2 E}{\partial R^1_x \partial R^2_x} & \frac{\partial^2 E}{\partial R^1_x \partial R^2_y} & \frac{\partial^2 E}{\partial R^1_x \partial R^2_z} & \ldots \\ \frac{\partial^2 E}{\partial R^1_y \partial R^1_x} & \frac{\partial^2 E}{\partial R^1_y \partial R^1_y} & \frac{\partial^2 E}{\partial R^1_y \partial R^1_z} & \frac{\partial^2 E}{\partial R^1_y \partial R^2_x} & \frac{\partial^2 E}{\partial R^1_y \partial R^2_y} & \frac{\partial^2 E}{\partial R^1_y \partial R^2_z} & \ldots \\ \frac{\partial^2 E}{\partial R^1_z \partial R^1_x} & \frac{\partial^2 E}{\partial R^1_z \partial R^1_y} & \frac{\partial^2 E}{\partial R^1_z \partial R^1_z} & \frac{\partial^2 E}{\partial R^1_z \partial R^2_x} & \frac{\partial^2 E}{\partial R^1_z \partial R^2_y} & \frac{\partial^2 E}{\partial R^1_z \partial R^2_z} & \ldots \\ \frac{\partial^2 E}{\partial R^2_x \partial R^1_x} & \frac{\partial^2 E}{\partial R^2_x \partial R^1_y} & \frac{\partial^2 E}{\partial R^2_x \partial R^1_z} & \frac{\partial^2 E}{\partial R^2_x \partial R^2_x} & \frac{\partial^2 E}{\partial R^2_x \partial R^2_y} & \frac{\partial^2 E}{\partial R^2_x \partial R^2_z} & \ldots \\ \frac{\partial^2 E}{\partial R^2_y \partial R^1_x} & \frac{\partial^2 E}{\partial R^2_y \partial R^1_y} & \frac{\partial^2 E}{\partial R^2_y \partial R^1_z} & \frac{\partial^2 E}{\partial R^2_y \partial R^2_x} & \frac{\partial^2 E}{\partial R^2_y \partial R^2_y} & \frac{\partial^2 E}{\partial R^2_y \partial R^2_z} & \ldots \\ \frac{\partial^2 E}{\partial R^2_z \partial R^1_x} & \frac{\partial^2 E}{\partial R^2_z \partial R^1_y} & \frac{\partial^2 E}{\partial R^2_z \partial R^1_z} & \frac{\partial^2 E}{\partial R^2_z \partial R^2_x} & \frac{\partial^2 E}{\partial R^2_z \partial R^2_y} & \frac{\partial^2 E}{\partial R^2_z \partial R^2_z} & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{pmatrix}\end{split}\]

Vibrational Analysis

In the value of the vibrational_analysis, each natural frequency (1/cm) of the vibration mode and the corresponding vibration mode normal_mode are calculated. The vector components of the vibration mode correspond to

\[R^1_x, R^1_y, R^1_z, R^2_x, R^2_y, R^2_z, ...\]

Output Example.

"evaluated_properties": [
{
  "energy": {
    "values": [
      {"state": 0, "value": -1.1362360604901143},
      {"state": 1, "value": -0.47828919430555683}
    ],
    "metadata": {
      "elapsed_time": 0.000997585000000134
    }
  },
},
{
  "num_electrons": {
    "values": [
      {"state": 0, "value": 2.0},
      {"state": 1, "value": 2.0},
    ],
    "metadata": {
      "elapsed_time": 0.000009585000000134
    }
  },
},
{
  "multiplicity": {
    "values": [
      {"state": 0, "value": 1.0},
      {"state": 1, "value": 3.0},
    ],
    "metadata": {
      "elapsed_time": 0.000007585000000134
    }
  },
},
{
  "sz_number": {"values": [
      {"state": 0, "value": 0.0},
      {"state": 1, "value": 0.0},
    ],
    "metadata": {
      "elapsed_time": 0.000005578000000134
    }
  },
},
{
  "dipole_moment": {
    "values": [{"state": 0, "value": [0.0, 0.0, -1.1143463019003264e-07]}],
    "metadata": {
      "elapsed_time": 0.0004000680000000312
    }
  }
},
{
  "transition_dipole_moment": {
    "values": [
      {
        "state_pair": [0, 1],
        "value": [
            {"real": 0.0, "imag": 0.0},
            {"real": 0.0, "imag": 0.0},
            {"real": 1.683007710279183e-07, "imag": 0.0}
        ]
      }
    ],
    "metadata": {
      "elapsed_time": 0.0022338280000000488
    }
  }
},
{
  "gradient": {
    "values": [
      {
        "state": 0,
        "value": [0.0, 0.0, 0.03522682150310957, 0.0, 0.0, -0.035226821562505006],
        "type": "HAMILTONIAN_NUMERICAL"
      }
    ],
    "metadata": {
      "elapsed_time": 0.673054386
    }
  }
},
{
  "hessian": {
    "values": [
      {
        "value": [
          [-0.02609510201324114, 0.0, 0.0, 0.02671120741221516, 0.0, 0.0],
          [0.0, -0.02609510201324114, 0.0, 0.0, 0.026711207412215148, 0.0],
          [0.0, 0.0, 0.5951536730703917, 0.0, 0.0, -0.5952415631144654],
          [0.02671120741221516, 0.0, 0.0, -0.02609510201324114, 0.0, 0.0],
          [0.0, 0.026711207412215148, 0.0, 0.0, -0.02609510201324114,0.0],
          [0.0, 0.0, -0.5952415631470315, 0.0, 0.0, 0.5950908117050806]
        ],
        "state": 0
      }
    ],
    "metadata": {
      "elapsed_time": 5.235920265000001
    }
   }
  },
  {
    "vibrational_analysis": {
      "values": {
        "state": 0,
        "value": [
          {
            "frequency": {
            "imag": 8.323188334444037,
            "real": 0.0
            },
            "normal_mode": [
              0.37024605639968616,
              -0.5991240303578433,
              0.0,
              0.37024605639968616,
              -0.5991240303578433,
              0.0,
            ]
          },{
            ...
          },
        ],
        "metadata": {
          "elapsed_time": 4.942824509999998
        }
      },
      ...
    },
}